When is a part suitable for metal or ceramic injection moulding?

What is the production volume?

Because of the mould cost, MIM is not usually applied to lower production quantities, yet proves very effective for large quantities. Generally, production quantities of 200,000 or more per year are attractive.

There is little willingness to take on production runs in the range from 5,000 to 20,000 per year. Below 5,000 per year is possible, but most vendors do not like to devote engineering talent to such projects.

Thus, MIM is most attractive for component such as the mobile cell phone hinges shown in Fig. 1 (see previous page)

 

Is the geometry complex in three dimensions?

MIM is most effective when the component has holes, slots, ribs, protrusions, and multiple features such as evident in Fig. 2 (see previous page).

On the other hand, simple two-dimensional shapes, such as flat components with uniform section thicknesses, are better produced using stamping, rolling, or die compaction.

 

When is a part suitable for metal or ceramic injection moulding? - Fig_3

Fig. 3 A 8.5 g firearm component with a maximum dimension of 27 mm, showing several of the desirable features for MIM, including the hollowed out section

Is it feasible to use MIM for production?

Technical feasibility is best measured with respect to the typical part profile and a good example is seen in Fig. 3.

Most MIM parts are small, complex, thin walled, and like Goldilocks ‘just right’ with neither too few or too many features. Here are some of the typical attributes [3]:

  • typical mass is about 10g, but the range is from 0.02 to 500g
  • the distribution in production is shown in Fig. 4
  • typical maximum dimension is 25 to 35 mm, ranging up to 260 mm
  • the distribution of maximum dimension is plotted in Fig. 5
  • typical wall thickness often is 2 to 3mm, ranging down to 0.1 mm
  • typical number of specified dimensions is near 70.

 

When is a part suitable for metal or ceramic injection moulding? - fig_4

Fig. 4 Cumulative distribution of component mass for more than 200 MIM parts, showing the median is near 10 g

 

When is a part suitable for metal or ceramic injection moulding? - Fig_5

Fig. 5 Cumulative distribution of the maximum component dimension for more than 200 MIM parts, showing a median near 25 mm

 

When is a part suitable for metal or ceramic injection moulding? - Fig_6

Fig. 6 A thin-walled titanium MIM part with a maximum dimension of 53 mm and 18.3 g mass

How different is MIM from plastic moulding?

The MIM process shares many attributes with plastics. Both favour hollow and thin-walled shape, with tapers and generally slender geometries, as illustrated in Fig. 6.

Generally, if a part is possible in plastics, then it is possible via MIM, but it might not be economical.

 

What materials are possible?

Just about all common engineering materials have been demonstrated in the MIM process.

However, it is best to stick with stainless steels if possible. Over half of all MIM components are fabricated from stainless steels, meaning this has the largest vendor base, the largest body of process knowledge, and a low material cost due to the high production volume.

Generally, MIM is most attractive for higher melting temperature materials. It is best to avoid very strong oxide formers, reactive metals, volatile, and toxic metals.

Accordingly, beryllium, lead, manganese, and magnesium are avoided. Of the lower melting metals, aluminium has been demonstrated, yet has not reached large production levels.

 

What about costs?

Production viability goes beyond just part cost and includes mould cost and time to produce the mould, as well as determination if the MIM operation has the skill, time, or manpower to take on the project.

It is not easy to generalise, but tooling costs and delivery times are significant. Often, smooth surfaces and tight tolerances add much to the production cost.

Early discussions with a vendor can help determine if the MIM part is over-specified to the point where costs escalate.

 

Continue to next page: Optimising your design for MIM production

 

Industry News

Read the latest issue of PIM International

The latest issue of PIM International magazine is available to view online or download in PDF format.

As well as an extensive MIM, CIM industry and sinter-based AM industry news section, this 124-page issue includes the following exclusive articles and reports:

  • Bosch Advanced Ceramics: Driving ceramic Additive Manufacturing for series production with Lithoz
  • High precision, flexibility and intensive customer support: How Demcon MIM is planning ahead for long-term growth
  • Playing the long game: The story of Binder Jetting, and ExOne’s view on a rapidly evolving technology landscape
  • Riding the storm: A review of progress in China and Taiwan’s MIM industry during 2020
  • Advanced Powder Injection Moulding process developments presented at Euro PM2020
  • > Go to magazine page

E-newsletter

Register for our e-newsletter and we'll let you know each time a new issue of PIM International magazine is available, as well as keeping you informed of MIM and CIM industry developments.

Industry News

Copy link
Powered by Social Snap