ExOne announces five projects to advance binder jet Additive Manufacturing

June 17, 2020

ExOne’s Additive Manufacturing machines are believed to be the most researched in the field of Binder Jetting (Courtesy The ExOne Company)

The ExOne Company, North Huntingdon, Pennsylvania, USA, has announced that five projects run by the company in partnership with Pennsylvania universities have received funding through the Manufacturing PA Innovation Program to advance metal Binder Jetting (BJT) Additive Manufacturing.

The award is part of a wider funding round in which Pennsylvania’s Department of Community and Economic Development (DCED) awarded $2.8 million to Pennsylvania universities for forty-three projects on advanced manufacturing technologies.

ExOne’s Binder Jetting systems are currently able to additively manufacture parts in more than twenty metals, ceramics and composite materials, but important R&D work is still needed to further advance the production technology.

“The Manufacturing PA program is helping ExOne to expand our research and development efforts in important ways with the assistance of Pennsylvania’s outstanding universities and other technology companies,” stated John Hartner, ExOne CEO. “The projects funded by this program will help ExOne unlock the commercial and sustainability value that binder jet 3D printing has to offer, such as delivering lighter weight vehicles that are more fuel-efficient as well as all-new innovations.”

ExOne’s Additive Manufacturing machines are believed to be the most researched in the field of Binder Jetting, and this work has played an important role in advancing ExOne’s BJT strategies, materials and processes.

“We strongly value our relationships with the academic R&D community, and we appreciate their support enhancing our competitiveness and advancing this important 3D printing field,” Hartner added. “We congratulate our partners and all of the other universities and companies receiving Manufacturing PA Innovation funding.”

The five projects funded by Manufacturing PA are expected to help ExOne resolve challenges related to the Binder Jetting of irregular and porous powders, as well as sintering and identifying parts that can best benefit from Binder Jetting, among other projects. The awards are as follows:

Carnegie Mellon University: ‘Binder Jet 3D Printing from Powder Produced by Metal Attrition.’ This project will work to optimise BJT AM parameters and densification of irregularly shaped powders, such as those experiencing attrition.

Carnegie Mellon University, with Kennametal and Ansys: ‘Optimal Parts Consolidation and Structural Redesign for Additive Manufacturing to Reduce Weight, Production Costs, and Lifecycle Fuel Use.’ This project aims to create a software tool that allows users to upload a CAD file of a large-scale system and automatically identify components and subsystems for consolidation and optimisation with BJT. This will allow manufacturers to minimise production costs and lightweight existing parts while preserving functionality.

The Pennsylvania State University: ‘Advanced Manufacturing of Ceramics for PA Industries.’ This project aims to develop a new class of ceramic materials using Binder Jetting technology, which will provide a unique combination of high-temperature stability, corrosion resistance and toughness for a wide range of applications.

University of Pittsburgh with Ansys: ‘A Computational Tool for Simulating the Sintering Behavior in Binder Jet Additive Manufacturing.’ This project aims to develop a computational tool for simulating the deformation and porosity resulting from the sintering of binder jet additively manufactured parts made of 316L stainless steel.

Villanova University: ‘Wetting of Binder Solution on Porous Bed of Microparticles.’ This project will investigate how to best wet porous particles with binder and generate guidelines or parameters for this form of AM.

www.exone.com 

Industry News

Read the latest issue of PIM International

The latest issue of PIM International magazine is available to view online or download in PDF format.

As well as an extensive MIM, CIM industry and sinter-based AM industry news section, this 112-page issue includes the following exclusive articles and reports:

  • Element 22: A leader in titanium MIM leverages its expertise to advance sinter-based Ti Additive Manufacturing
  • Digitising part production: A new approach to creating unique part IDs for MIM components
  • Making the business case: How sinter-based Additive Manufacturing can compete with Powder Injection Moulding
  • Reducing MIM part costs with more expensive materials? The re-evaluation of a major 3C application
  • The production and evaluation of alumina sinter supports for Metal Injection Moulding by ceramic Additive Manufacturing
  • > Go to magazine page

E-newsletter

Register for our e-newsletter and we'll let you know each time a new issue of PIM International magazine is available, as well as keeping you informed of MIM and CIM industry developments.

Industry News

Copy link
Powered by Social Snap